### 西安科技大学

# 《软件建模与实践》

## 实验报告

题 目 <u>基于 ObjectARX 的 AutoCAD 二次开发</u> <u>锚杆支护系统的设计及自动绘图软件</u>

| 院、系(部) |   | 计算机科学与技术        |
|--------|---|-----------------|
| 专业及班级  |   | 计算机科学与技术 1901 班 |
| 学      | 号 | 19208049010     |
| 姓      | 名 | 赵琦              |
| 日      | 期 | 2020年1月7日       |

#### 1 题目要求

锚杆支护是指在边坡、岩土深基坑等地表工程及隧道、采场等地下硐室施工 中采用的一种加固支护方式。AutoCAD 是 Autodesk 公司首次于 1982 年开发的自 动计算机辅助设计软件,用于二维绘图、详细绘制、设计文档和基本三维设计, 现已经成为国际上广为流行的绘图工具。要求设计一个软件,实现根据不同的计 算方法对矿井巷道参数进行设计,并调用 AutoCAD 绘制巷道锚杆锚索支护设计 图。具体实验要求如下:

(1)对系统进行架构设计、详细的需求分析设计,设计需求分析的问题,并给出需求分析设计报告;

(2) 画出系统的用例图、类图、交互图、活动图等;

(3)要求在客户端对巷道参数进行输入和计算,并能调用 AutoCAD 根据设计的参数进行绘制巷道锚杆(索)支护图。

(4)设计并实现该系统,要求系统具有一定的可拓展性和良好的用户交互性,例如计算方法的增加、具有不同巷道的绘制方法,对输入的数据进行校验等。

#### 2 需求说明

根据以上题目要求分析,该锚杆支护系统需要具备以下几个功能模块:

1. 工程管理模块:完成工程的新建、打开和保存功能。每个子功能应具有 良好的用户交互设计;

2. 巷道参数管理模块:完成对巷道参数的输入及数据验证功能;

3. 计算方法模块: 根据不同的计算方法, 输入相应的参数进行计算;

4. 自动绘图模块: 根据巷道参数、锚杆、锚索参数绘制不同的 AutoCAD 设 计图。

#### 3 总体设计

#### 3.1 架构设计

对软件的功能需求进行分析,设计本系统的架构为一下三种子模块:

1. 负责与用户交互、处理数据的可执行文件 MFCad. exe;

2. 负责绘图的 AutoCAD 加载文件 INGPr jcadc. arx;

3. 桥接文件 bridge. ini,负责将以上两程序的数据进行桥接,完成参数的 传递。

本系统的软件架构图如下图所示:



图1系统架构图

#### 3.2 业务逻辑设计

分析软件各模块功能,设计出本系统的用例图如下图所示:



图 2 系统用例图

4 详细设计

#### 4.1 工程管理模块

工程管理模块负责工程的新建、打开及保存,自然而然就需要实现对文件的保存、读取和打开功能,编写 FileUtils 工具类实现文件的创建、读写等原子函数,再编写 MFC 按钮的点击事件对其进行个性化调用。

由于同一时刻只能有一个工程打开,故采用单例的模式构建一个工程,与工程对应的界面ProjectDialog也是同理,实例化一个全局的ProjectDialog对象,确保加载的是只有一个工程。

```
CProjectDialog* pDlg = NULL;
```

打开工程的代码如下所示:

```
void CMFCadDlg::OnOpenProject()
{
    // TODO: 在此添加命令处理程序代码
    TCHAR szFilter[] = TEXT ("参数文件(*. ini) |*. ini | 所有文件(*. *) |*. *| |");
    CFileDialog fileDlg(TRUE, TEXT("ini"), NULL, 0, szFilter, this);
    CString strFilePath;
    if (IDOK == fileDlg.DoModal())
    {
        strFilePath = fileDlg.GetPathName();
    }
    if (!strFilePath.IsEmpty()) {
        CArcProjectBuilder::GetInstance()->SetFileUrl(strFilePath);
        CArcProjectBuilder::GetInstance()->BuildAll();
        MessageBox(T("文件打开成功!参数载入完毕"));
        CArcProjectBuilder::GetInstance()->SetSavedToFile(FALSE);
         pDlg = new CProjectDialog();
        pDlg->Create(IDD_PROJECT_DIALOG, this);
        pD1g->ShowWindow(SW_SHOW);
    }
}
```

新建工程分为三种不同的情况,若当前无工程打开,直接新建即可;若当前 有工程打开,需要查看当前工程是否已经保存了,若已保存则直接新建,若未保 存需要询问是否保存当前工程,或是不保存直接新建,同时需要对当前软件中所 维护的信息进行修改。核心代码如下所示:

```
void CMFCadDlg::OnNewProject()
```

```
CArcProjectBuilder::GetInstance()->GetSavedToFile()
    if (CArcProjectBuilder::GetInstance()->GetSavedToFile() == TRUE
        && (!CArcProjectBuilder::GetInstance()->GetFileUrl().IsEmpty()))
    {
        // 打开的工程已经保存了
        CArcProjectBuilder::GetInstance()->SetFileUrl(_T(""));
        CArcProjectBuilder::GetInstance()->SetSavedToFile(FALSE);
        CArcProjectBuilder::GetInstance()->SetTunnelProject(new CTunnelProject());
        CArcProjectBuilder::GetInstance()->SetArcTunnel(new CArcTunnel());
        if (pDlg == NULL)
         {
             pDlg = new CProjectDialog();
             pDlg->Create(IDD_PROJECT_DIALOG, this);
        }
        pD1g->ShowWindow(SW_SHOW);
    }
    else if (CArcProjectBuilder::GetInstance()->GetSavedToFile() == TRUE &&
        CArcProjectBuilder::GetInstance()->GetFileUrl().IsEmpty()) {
        // 当前窗口是新建窗口
        CArcProjectBuilder::GetInstance()->SetFileUrl(_T(""));
        CArcProjectBuilder::GetInstance()->SetSavedToFile(FALSE);
        CArcProjectBuilder::GetInstance()->SetTunnelProject(new CTunnelProject());
        CArcProjectBuilder::GetInstance()->SetArcTunnel(new CArcTunnel());
        if (pDlg == NULL)
         {
             pDlg = new CProjectDialog();
             pDlg->Create(IDD PROJECT DIALOG, this);
             pDlg->ShowWindow(SW_SHOW);
        }
    }
    else if (CArcProjectBuilder::GetInstance() ->GetSavedToFile() == FALSE)
    {
        // 打开的工程没保存
        if(IDYES== MessageBox(T("当前工程尚未保存,是否直接新建?"),0,MB YESNO))
             if (pDlg != NULL)
             {
                 CArcProjectBuilder::GetInstance()->SetProjectSaveToInstance(TRUE);
                 std::cout << "destory pdlg\n";</pre>
                 pDlg->DestroyWindow();
                 delete pDlg;
                 pD1g = NULL;
                 std::cout << "test destory pdlg\n";</pre>
```

```
CArcProjectBuilder::GetInstance() ->SetProjectSaveToInstance(FALSE);
             }
                 CArcProjectBuilder::GetInstance()->SetFileUrl(_T(""));
                 CArcProjectBuilder::GetInstance() ->SetSavedToFile(FALSE);
                 CArcProjectBuilder::GetInstance() ->SetTunnelProject(new
CTunnelProject());
                 CArcProjectBuilder::GetInstance() ->SetArcTunnel(new CArcTunnel());
                 if (pD1g == NULL)
                 {
                     pDlg = new CProjectDialog();
                     pDlg->Create(IDD PROJECT DIALOG, this);
                     pD1g->ShowWindow(SW_SHOW);
                 }
        }
    }
}
    保存当前工程参数到文件,核心代码如下所示:
    CArcProjectBuilder::GetInstance()->SetFileUrl(strFilePath);
    if ((CArcProjectBuilder::GetInstance()->SaveProjectToFile() == true)
        && (CArcProjectBuilder::GetInstance()->SaveTunnelFlagToFile() == true)
        && (CArcProjectBuilder::GetInstance()->SaveParametersToFile() == true)
        && (CArcProjectBuilder::GetInstance()->SaveArcTunnelInfoToFile() == true)
        && (CArcProjectBuilder::GetInstance()->SaveMethodToFile() == true)
        ) {
        CArcProjectBuilder::GetInstance()->SetSavedToFile(TRUE);
        MessageBox(_T("保存工程信息成功"));
    }
    else {
        CArcProjectBuilder::GetInstance()->SetSavedToFile(FALSE);
        MessageBox(_T("保存工程信息失败,参数可能不完善"));
    }
```

#### 4.2 巷道参数管理模块

对打开的文件进行读写处理,从工程构造 ProjectBuilder 类实现对本系统 中一个工程的参数的构建和保存等功能,利用建造者模式创建工程类这一复杂对 象,工程类包括基本的巷道属性、支护方式、计算方法及各锚杆锚索参数等。

对项目中所需要的参数进行分析,设计出如下图所示的类间关系图,将巷道 的公共参数封装在 CTunnel 类,工程信息如设计者、图纸编号等信息抽象为 CTunnelProject 类,相应的锚杆锚索信息也进行封装,在建造者类中的成员方 法,通过 fileUrl 这一变量控制本地文件,从而实现数据的初始化、保存、加载等功能。



图 3 锚杆支护系统 UML 类图

#### 4.3 计算方法模块

每个工程可以选择相应的计算方法对输入的参数进行计算,得到锚杆、锚索 的值,将不同的计算方法采用工厂模式进行封装,在 BuildMethod 方法中对工程 的各个计算方法进行初始化,采用静态转型方法进行向下转型,便于工程中抽象 得调用。

| <pre> Eclass CMethod { }; </pre>                |
|-------------------------------------------------|
| <pre>€ class CTheoryCalMethod { };</pre>        |
| <pre> etass CProExpMethod { }; </pre>           |
| <pre>€ class CLooseRangeMethod { };</pre>       |
| <pre> <b>■ class</b> CMethodFactory { }; </pre> |
| <pre> ∎ class CTheroyMethodFactory { }; </pre>  |
| <pre> ∎ class CProExpMethodFactory { }; </pre>  |
| the class CLooseRangeMethodFactory { { } ; }    |
| 图 4 计算方法类结构                                     |

对计算方法进行初始化的核心代码如下所示:

```
factory = new CTheroyMethodFactory();
method = factory->createMethod();
// 静态转型
```

theory = static\_cast<CTheoryCalMethod \*>(method);

#### 4.4 自动绘图模块

要调用 AutoCAD 绘图,首先通过注册表获取到 AucoCAD 的安装路径,通过创 建进程的方式启动 AutoCAD,并令其在启动时,自动加载编写好的 INGPr jcadc. arx 文件绘图。通过注册表获取 AutoCAD 安装路径的代码如下: CString CFileUtil::GetAppRegeditPath() { CString strAppName("SOFTWARE\\Autodesk\\AutoCAD\\R21.0\\ACAD-0001\\Install"); std::cout << strAppName.GetString() << std::endl;</pre> HKEY hKey; CString strAppRegeditPath(""); TCHAR szProductType[MAX\_PATH]; memset(szProductType, 0, sizeof(szProductType)); DWORD dwBuflen = MAX PATH; LONG 1Ret = 0; // 打开注册表,只有打开后才能进行其他操作 1Ret = RegOpenKeyEx(HKEY\_LOCAL\_MACHINE, //要打开的根键 LPCTSTR(strAppName), // 要打开的子键 0, //这个一定为0 KEY\_WOW64\_64KEY | KEY\_QUERY\_VALUE, //指定打开方式为读 &hKey ); if (1Ret != ERROR\_SUCCESS) { printf("open error!\n"); return strAppRegeditPath; } else { // 下面开始查询 1Ret = RegQueryValueEx(hKey, //打开注册表时返回的句柄 TEXT ("INSTALLDIR"), //要查询的名称 NULL, NULL, (LPBYTE) szProductType, &dwBuflen); if (1Ret != ERROR SUCCESS)

```
{
    printf("read error!\n");
    return strAppRegeditPath;
}
else
{
    RegCloseKey(hKey);
    strAppRegeditPath = szProductType;
}
std::cout << strAppRegeditPath.GetString() << std::endl;
return strAppRegeditPath;
</pre>
```

}

负责自动绘图的 Arx 文件通过调用 ObjectArx 提供的各种绘图 Api,将绘制 直线、矩形、拱形等基本函数封装起来,在不同种巷道的绘制中进行调用即可。

将绘制的图形添加到模型空间,需要封装一个关键的函数:

```
//将实体添加到模型空间
AcDbObjectId CDrawUtil::PostToModelSpace(AcDbEntity * pEnt)
{
    //检查输入参数的有效性
   assert(pEnt);
    //获得当前图形数据库的块表
    AcDbBlockTable *pBlkTbl = NULL;
    acdbHostApplicationServices() ->workingDatabase() ->getBlockTable(pBlkTbl,
AcDb::kForRead);
    //获得模型空间对应的块表记录
    AcDbBlockTableRecord *pBLkTblRcd = NULL;
    pBlkTbl->getAt(ACDB_MODEL_SPACE, pBLkTblRcd, AcDb::kForWrite);
    pB1kTb1->close();
    //将实体添加到模型空间的块表记录
    AcDbObjectId entId;
    Acad::ErrorStatus errorStatus = pBLkTblRcd->appendAcDbEntity(entId, pEnt);
    if (errorStatus != Acad::e0k)
    {
        pBLkTb1Rcd->close();
        delete pEnt;
        pEnt = NULL;
        return AcDbObjectId::kNull;
    }
    //关闭模型空间表记录和实体
    pBLkTb1Rcd->close();
    pEnt \rightarrow close();
    return entId;
    }
```

对三种巷道的绘制方式进行分析,不同巷道的绘制方法不同,设计出绘制函

数如下所示,在具体的每个巷道中根据彼此的差异分别设计不同的绘制函数。

```
virtual void DrawProject(); // 绘制工程信息的表格
//绘制断面图形,三种巷道绘制断面方式各不相同
virtual void DrawTunnel();
//顶部锚杆托梁
virtual void DrawTopTuoLiang(CBolt bolt);
// 绘制顶部锚杆
virtual void DrawTopBolt(CBolt bolt);
//绘制顶视图的网格线
virtual void DrawTopViewNet(CBolt bolt);
virtual void DrawLeftBolt(CBolt bolt);
virtual void DrawLeftTuoLiang(CBolt bolt);
virtual void DrawLeftViewNet(CBolt bolt);
virtual void DrawRightBolt(CBolt bolt);
virtual void DrawRightTuoLiang(CBolt bolt);
virtual void DrawRightViewNet(CBolt bolt);
// 绘制锚索
virtual void DrawCable(CCable cable);
```

### 5 测试与实现



图 5 软件主界面

| 设置工程模板信 | ŧ.          | <b></b> X |
|---------|-------------|-----------|
| 绘图信自    |             |           |
| 图纸名称:   | 建新煤矿1号      |           |
| 图名标注:   | 1           |           |
| 图形比例:   | 1 : 100     |           |
| 图形编号:   | 1           |           |
| 图纸尺寸:   | A4 👻        |           |
| 设计信息    |             |           |
| 设计者:    | 贾澎涛         |           |
| 日期:     | 2020年 1月15日 |           |
| 审核者:    | 宋勇军         |           |
| 审核日期:   | 2020年 1月15日 |           |
| 设计单位:   | 西安科技大学建工学院  |           |
| 开发单位:   | 西安科技大学      |           |
|         | 确定 取消       |           |

图 6 新建工程界面

| 输入巷道断面 | 面几何参数                                                                                                                                                             | × |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1 4    | ₩八夜日仓垣盼面儿刊参致 巷道支护方式                                                                                                                                               |   |
|        | <ul> <li>● 锚杆(索)支护</li> <li>○ 锚杆(索)+混凝土砌碹支护</li> <li>○ 锚杆(索)+喷射混凝土支护</li> <li>○ 混凝土砌碹支护</li> </ul>                                                                |   |
|        | 其形断面宽度(mm):       5500.00         拱形直墙高度(mm):       2200.00         拱形断面高度(mm):       1500.00         横形断面高度(mm):       1500.00         ● 锚索垂直于拱面       ○ 锚索垂直于地面 |   |
| ☑角     | 角部锚杆偏转角度                                                                                                                                                          |   |
|        | 与帮的上采用(度):[85 与常的下采用(度):[79 ]<br>上一页 确定 取消                                                                                                                        |   |

图 7 巷道参数输入界面

| ・<br>A 巷道锚<br>材 | 杆 (索) 支护参数计算 | × |
|-----------------|--------------|---|
| -               | 方法选择         |   |
| 1               | ●理论计算法       |   |
| -               | ○工程经验类比法     |   |
|                 | ○松动范围设计法     |   |
|                 | ○专家决策设计法     |   |
| 1               |              |   |
| ŧ               | 确定取消         |   |

图 8 方法选择界面

| ☑ 要顶部锚杆                                  | 🔽 要帮部锚杆            | 🔲 是否为全锚索             | ☑ 要锚索             |
|------------------------------------------|--------------------|----------------------|-------------------|
| 顶部锚杆                                     | 帮部锚杆               | 短锚索                  | 锚索                |
| 直径(mm): 18.00                            | 直径(mm): 18.00      | 直径(mm):              | 直径(mm): 15.24     |
| 长度(mm): 2000.00                          | 长度(mm): 2000.00    | 长度(mm):              | 长度(mm): 4500.00   |
| 材料(型号): 螺旋钢纹                             | 材料(型号): 螺旋钢纹       | 材料(型号):              | 材料(型号): 钢绞线       |
| 尾部螺纹长(mm): 120.00                        | 尾部螺纹长(mm): 120.00  | 尾部螺纹长(mm):           | 尾部螺纹长(mm): 120.00 |
| 数里(根): 3                                 | 数里(根): 3           | 数量(根):               | 数量(根): 2          |
| 间距(mm): 1000.00                          | 间距(mm): 1000.00    | 间距(mm):              | 间距(mm): 1200.00   |
| 排距(mm): 1000.00                          | 排距(mm): 1000.00    | 排距(mm):              | 排距(mm): 2400.00   |
| 锚固长(mm): 700.00                          | 锚固长(mm): 700.00    | 锚固长(mm):             | 锚固长(mm): 1400.00  |
| 顶锚杆托梁                                    | 帮部锚杆托梁             | 短锚索托梁                | 锚索托盘              |
| 净宽(mm): 50.00                            | 净宽(mm): 50.00      | 净宽(mm):              | 长度(mm): 500.00    |
| 材料(型号): 14号圆钢焊接                          | 材料(型号): 14号圆钢焊接    | 材料(型号):              | 材料(型号): 12槽钢      |
| 顶板纵向托梁                                   | 帮部纵向托梁             | 短锚索组向托逊              | 树脂药卷              |
| 净宽(mm): 50.00                            | 净宽(mm): 50.00      | 》运输来就回50米<br>净宽(mm): | 直径(mm): 28.00     |
| 材料(型号): 14号圆钢焊接                          | 材料(型号): 14号圆钢焊接    | 材料(뀐묵):              | 长度(mm): 35.00     |
| 「「「「「」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「 | 邦報锚杠任舟             | <b>拉猫卖猫杠</b> 托舟      | 材料(型号): Z2835     |
| 长度(mm): 150*150*10                       | 长度(mm): 150*150*10 | 长度(mm):              | 备注                |
| 材料(型号): 10槽钢                             | 材料(型号): 10槽钢       | 材料(型号):              |                   |
| 而部网                                      | 帮部部网               | 混凝土砌煊参数              |                   |
| ◎ 无 尺寸:                                  | ◎ 无 尺寸:            | 混凝土厚度(mm): 20        |                   |
| ◎ 金属网 ◎ 钢筋网 ◎ 塑料网                        | ◎ 金属网 ◎ 钢筋网 ◎ 塑料网  | 砌煊厚度(mm): 20         |                   |



| 给入带去分数              |                                          |        |            |        |      |          |             |    |
|---------------------|------------------------------------------|--------|------------|--------|------|----------|-------------|----|
| 欄穴曲系参数<br>煤岩平均重度:   | 0                                        | kN/m^3 | 抗压强度: 0    | 1      | МРа  | 读探围要来早   | u.          |    |
| 巷道埋深:               | 0                                        | mm     | 煤层内摩擦角: 0  |        | 度均   | ○ 稳定围    | 씤           |    |
| 煤层粘聚力:              | 0                                        | kN     | 树脂药卷长度: 0  |        | mm 1 | ◎ 稳定性转   | 迹好围岩        |    |
| 岩石坚固系数(1            | .5~2.5);                                 | 0      |            |        |      | ◎ 中等稳定   | 注围岩         |    |
| 約二十分秒               |                                          |        | 检》谋去关款     |        |      | ◎ 稳定性转   | 迹差围岩        |    |
| 制八曲1T参数<br>锚杆钻斗 吉   | íz. 0                                    | mm     | 間へ曲系 S 数   | . 0    | mm   | ◎ 不稳定图   | 諸           |    |
| 猫肉力设计               | 值: 0                                     | kN     | 猫索硝肟香油     | : 0    | kN   | 查看围      | <b>岩分</b> 类 |    |
| 锚固粘结涡               | La. 。                                    | MPa    | 湖南粘结品度     |        | MPa  |          |             |    |
|                     | 95. 0                                    |        | 福安排跖       | : 0    | mm   | 输入锚索参数   | t           |    |
| 101717              | 76: 0                                    |        | ****       |        |      | 锚索长度:    | 1000        | mn |
| 田竹松                 | · () () () () () () () () () () () () () | 根      | 田糸根剣       | : 0    | 恨    | 间距:      | 1000        | mn |
| 经验系数 <b>(</b> 1.    | 2~1.5):                                  | 0      | 锚索自由长度     | : 0    | mm   | 排距:      | 1000        | mn |
| 采动影响系数 <b>(1</b> .) | 3~2.5):                                  | 0      | 采动影响系数(1.3 | ~2.5): | 0    | 锚索根数:    | 5           | 根  |
| 喷射混凝土               |                                          |        | 砌煊厚度       |        |      | 喷射混凝土    |             |    |
| n本自长月·短上 同          | me. 0                                    |        | 砌信厚度       | : 0    | mm   | nah:泪:好十 | ER.         |    |

图 10 理论计算法界面

| 选择围岩类别      | 1    |    | 输入锚杆参数         | 輸入锚杆参数    |     |  |  |
|-------------|------|----|----------------|-----------|-----|--|--|
| ◎ 稳定围岩      | H    |    | 锚杆长度(2.2~2.8): | 0         | m   |  |  |
| ◎ 稳定性转      | 好围岩  |    | 间距(0.6~1.0):   | 0         | m   |  |  |
| ◎ 中等稳定围岩    |      |    | 排距(0.6~1.0):   | 0         | m   |  |  |
| ◎ 稳定性转      | 達围岩  |    | 锚杆钻孔直径:        | 0         | mm  |  |  |
| ◎ 不稳定国      | 岩    |    | 锚固力设计值:        | 0         | kN  |  |  |
| 查看围岩分类      |      |    | 锚固粘结强度:        | 0         | MPa |  |  |
|             |      |    | 树脂药卷长度:        | 0         | mm  |  |  |
| 输入锚索参数      | t    |    |                |           |     |  |  |
| 锚索长度:       | 1000 | mm | 锚杆钻孔直径:        | 0         | mm  |  |  |
| 间距          | 1000 | mm | 锚固粘结强度:        | 0         | MPa |  |  |
| 排距:         | 1000 | mm | 树脂药卷长度:        | 3.7604984 | mm  |  |  |
| 锚索根数:       | 5    | 根  |                |           |     |  |  |
| 喷射混凝土       |      |    | 砌煊厚度           |           |     |  |  |
| 喷射混凝土厚度: mm |      |    | 砌煊厚度:          |           | mm  |  |  |
| <u> </u>    | 一页   | -  | 确定 取           | 消         |     |  |  |

~

#### 图 11 工程经验类比法

| A 松动范围设计法      |        |              | ×   |
|----------------|--------|--------------|-----|
| 松动范围计算方法选择     |        |              |     |
| ○ 松动范围直接测题     | 定法     | 松动范围:        | m   |
| ○ 冒落拱理论围岩参     | 参数法    | 岩石坚固系数:      |     |
| 围岩参数           |        |              |     |
| 围岩平均重度:        | kN/m^3 | 围岩平均粘聚力:     | MPa |
| 巷道埋深:          | m      | 围岩平均内摩擦角:    | 度   |
| 煤岩重度:          | kN/m^3 | 树脂药卷长度:      | mm  |
| 输入锚杆参数         |        | 输入锚索参数       |     |
| 锚杆长度(2.2~2.8): | m      | 锚索自由长度:      | m   |
| 间距(0.6~1.0):   | m      | 间距(0.6~1.0): | m   |
| 排距(0.6~1.0):   | m      | 排距(0.6~1.0): | m   |
| 锚杆钻孔直径:        | mm     | 锚索钻孔直径:      | mm  |
| 锚固力设计值:        | kN     | 锚索破断力:       | kN  |
| 锚固粘结强度:        | MPa    | 锚固粘结强度:      | MPa |
| 喷射混凝土          |        | 砌煊厚度         |     |
| 喷射混凝土厚度:       | mm     | 砌煊厚度:        | mm  |
| 确定             |        | 取消           |     |

图 12 松动范围设计法界面



图 13 绘制锚杆支护设计图总览

|     |          | Sun         |    |    |   |
|-----|----------|-------------|----|----|---|
|     | 比例       | 100         |    |    |   |
|     | 令天       |             |    | 编号 | 5 |
| 设计者 | 赵琦       | 2010和5加6日   |    |    |   |
| 审核者 | Mrs. Jia | 2010年10月11日 | 描述 |    |   |

图 14 工程信息标注表格



图 15 巷道断面图



图 16 顶视图



图 17 左视图 (右视图与其类似)

#### 6 总结

第一次编程实际应用中的软件,更是与之前所编的软件相差较大的 AutoCAD 自动绘图工具,从一开始了解自己要用什么技术、什么工具,到后面独立设计项 目架构,子模块间的结构,市面上关于 ObjectARX 的 AutoCAD 学习资料甚少,所 以一开始处处碰壁,在数次踩坑后最终还是开发出一个基本能用的软件,历时三 个月,自己对于 C++和 MFC 的应用更加熟练了,ObjectArx 开发实现了从 0 到 1 的质的飞跃,也感觉到自己更好地成为了一个问题解决者。

在此过程中,我更加明白了需求沟通的重要性,贾老师总是能站在用户的角 度提出很多的建议,包括测试文档更是让我感受到软件开发流程中的严谨性。关 于开发日志和测试日志,我有时候会写,但大多数时间一改 bug,改完改不完的 就到深夜了,也不知道该记录些什么东西,总是潦草几笔就盖过了,在这一部分 自己还需要多努力。